Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
@stdlib/math-base-napi-binary
Advanced tools
C APIs for registering a Node-API module exporting an interface for invoking a binary numerical function.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
C APIs for registering a Node-API module exporting interfaces for invoking binary numerical functions.
npm install @stdlib/math-base-napi-binary
var headerDir = require( '@stdlib/math-base-napi-binary' );
Absolute file path for the directory containing header files for C APIs.
var dir = headerDir;
// returns <string>
var headerDir = require( '@stdlib/math-base-napi-binary' );
console.log( headerDir );
// => <string>
#include "stdlib/math/base/napi/binary.h"
Invokes a binary function accepting and returning double-precision floating-point numbers.
#include <node_api.h>
// ...
static double add( const double x, const double y ) {
return x + y;
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_dd_d( env, info, add );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] double (*fcn)( double, double )
binary function.void stdlib_math_base_napi_dd_d( napi_env env, napi_callback_info info, double (*fcn)( double, double ) );
Invokes a binary function accepting and returning single-precision floating-point numbers.
#include <node_api.h>
// ...
static float addf( const float x, const float y ) {
return x + y;
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_ff_f( env, info, addf );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] float (*fcn)( float, float )
binary function.void stdlib_math_base_napi_ff_f( napi_env env, napi_callback_info info, float (*fcn)( float, float ) );
```de "stdlib/math/base/napi/binary.h"
Invokes a binary function accepting and returning double-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <node_api.h>
// ...
static stdlib_complex128_t add( const stdlib_complex128_t x, const stdlib_complex128_t y ) {
double xre;
double xim;
double yre;
double yim;
double re;
double im;
stdlib_complex128_reim( x, &xre, &xim );
stdlib_complex128_reim( y, &yre, &yim );
re = xre + yre;
im = xim + yim;
return stdlib_complex128( re, im );
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_zz_z( env, info, add );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] stdlib_complex128_t (*fcn)( stdlib_complex128_t, stdlib_complex128_t )
binary function.void stdlib_math_base_napi_zz_z( napi_env env, napi_callback_info info, stdlib_complex128_t (*fcn)( stdlib_complex128_t, stdlib_complex128_t ) );
Invokes a binary function accepting and returning single-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <node_api.h>
// ...
static stdlib_complex64_t add( const stdlib_complex64_t x, const stdlib_complex64_t y ) {
float xre;
float xim;
float yre;
float yim;
float re;
float im;
stdlib_complex64_reim( x, &xre, &xim );
stdlib_complex64_reim( y, &yre, &yim );
re = xre + yre;
im = xim + yim;
return stdlib_complex64( re, im );
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_cc_c( env, info, add );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] stdlib_complex64_t (*fcn)( stdlib_complex64_t, stdlib_complex64_t )
binary function.void stdlib_math_base_napi_cc_c( napi_env env, napi_callback_info info, stdlib_complex64_t (*fcn)( stdlib_complex64_t, stdlib_complex64_t ) );
Invokes a binary function accepting a double-precision floating-point number and a signed 32-bit integer and returning a double-precision floating-point number.
#include <node_api.h>
#include <stdint.h>
// ...
static double mul( const double x, const int32_t y ) {
return x * y;
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_di_d( env, info, mul );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] double (*fcn)( double, int32_t )
binary function.void stdlib_math_base_napi_di_d( napi_env env, napi_callback_info info, double (*fcn)( double, int32_t ) );
Invokes a binary function accepting and returning signed 32-bit integers.
#include <node_api.h>
#include <stdint.h>
// ...
static int32_t mul( const int32_t x, const int32_t y ) {
return x * y;
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_ii_i( env, info, mul );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] int32_t (*fcn)( int32_t, int32_t )
binary function.void stdlib_math_base_napi_ii_i( napi_env env, napi_callback_info info, int32_t (*fcn)( int32_t, int32_t ) );
Invokes a binary function accepting signed 32-bit integers and returning a double-precision floating-point number.
#include <node_api.h>
#include <stdint.h>
// ...
static double mul( const int32_t x, const int32_t y ) {
return x * y;
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_ii_d( env, info, mul );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] double (*fcn)( int32_t, int32_t )
binary function.void stdlib_math_base_napi_ii_d( napi_env env, napi_callback_info info, double (*fcn)( int32_t, int32_t ) );
Invokes a binary function accepting a single-precision floating-point number and a signed 32-bit integer and returning a single-precision floating-point number.
#include <node_api.h>
#include <stdint.h>
// ...
static float mulf( const float x, const int32_t y ) {
return x * y;
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_fi_f( env, info, mulf );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] float (*fcn)( float, int32_t )
binary function.void stdlib_math_base_napi_fi_f( napi_env env, napi_callback_info info, float (*fcn)( float, int32_t ) );
Invokes a binary function accepting a double-precision complex floating-point number and a signed 32-bit integer and returning a double-precision complex floating-point number.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <node_api.h>
#include <stdint.h>
// ...
static stdlib_complex128_t mul( const stdlib_complex128_t x, const int32_t y ) {
double xre;
double xim;
double re;
double im;
stdlib_complex128_reim( x, &xre, &xim );
re = xre * y;
im = xim * y;
return stdlib_complex128( re, im );
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_zi_z( env, info, mul );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] stdlib_complex128_t (*fcn)( stdlib_complex128_t, int32_t )
binary function.void stdlib_math_base_napi_zi_z( napi_env env, napi_callback_info info, stdlib_complex128_t (*fcn)( stdlib_complex128_t, int32_t ) );
Invokes a binary function accepting a single-precision complex floating-point number and a signed 32-bit integer and returning a single-precision complex floating-point number.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float32/reim.h"
#include <node_api.h>
#include <stdint.h>
// ...
static stdlib_complex64_t mul( const stdlib_complex64_t x, const int32_t y ) {
float xre;
float xim;
float re;
float im;
stdlib_complex64_reim( x, &xre, &xim );
re = xre * y;
im = xim * y;
return stdlib_complex64( re, im );
}
// ...
/**
* Receives JavaScript callback invocation data.
*
* @param env environment under which the function is invoked
* @param info callback data
* @return Node-API value
*/
napi_value addon( napi_env env, napi_callback_info info ) {
return stdlib_math_base_napi_ci_c( env, info, mul );
}
// ...
The function accepts the following arguments:
[in] napi_env
environment under which the function is invoked.[in] napi_callback_info
callback data.[in] stdlib_complex64_t (*fcn)( stdlib_complex64_t, int32_t )
binary function.void stdlib_math_base_napi_ci_c( napi_env env, napi_callback_info info, stdlib_complex64_t (*fcn)( stdlib_complex64_t, int32_t ) );
Macro for registering a Node-API module exporting an interface for invoking a binary function accepting and returning double-precision floating-point numbers.
static double add( const double x, const double y ) {
return x + y;
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_DD_D( add );
The macro expects the following arguments:
double (*fcn)( double, double )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface for invoking a binary function accepting and returning signed 32-bit integers.
static int32_t add( const int32_t x, const int32_t y ) {
return x + y;
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_II_I( add );
The macro expects the following arguments:
int32_t (*fcn)( int32_t, int32_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface for invoking a binary function accepting signed 32-bit integers and returning a double-precision floating-point number.
static double add( const int32_t x, const int32_t y ) {
return x + y;
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_II_D( add );
The macro expects the following arguments:
double (*fcn)( int32_t, int32_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface for invoking a binary function accepting and returning single-precision floating-point numbers.
static float addf( const float x, const float y ) {
return x + y;
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_FF_F( addf );
The macro expects the following arguments:
float (*fcn)( float, float )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface for invoking a binary function accepting and returning double-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
static stdlib_complex128_t add( const stdlib_complex128_t x, const stdlib_complex128_t y ) {
double xre;
double xim;
double yre;
double yim;
double re;
double im;
stdlib_complex128_reim( x, &xre, &xim );
stdlib_complex128_reim( y, &yre, &yim );
re = xre + yre;
im = xim + yim;
return stdlib_complex128( re, im );
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_ZZ_Z( add );
The macro expects the following arguments:
stdlib_complex128_t (*fcn)( stdlib_complex128_t, stdlib_complex128_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface for invoking a binary function accepting and returning single-precision complex floating-point numbers.
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/reim.h"
static stdlib_complex64_t add( const stdlib_complex64_t x, const stdlib_complex64_t y ) {
float xre;
float xim;
float yre;
float yim;
float re;
float im;
stdlib_complex64_reim( x, &xre, &xim );
stdlib_complex64_reim( y, &yre, &yim );
re = xre + yre;
im = xim + yim;
return stdlib_complex64( re, im );
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_CC_C( add );
The macro expects the following arguments:
stdlib_complex64_t (*fcn)( stdlib_complex64_t, stdlib_complex64_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface invoking a binary function accepting a double-precision floating-point number and a signed 32-bit integer and returning a double-precision floating-point number.
#include <stdint.h>
static double mul( const double x, const int32_t y ) {
return x * y;
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_DI_D( mul );
The macro expects the following arguments:
double (*fcn)( double, int32_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface invoking a binary function accepting a single-precision floating-point number and a signed 32-bit integer and returning a single-precision floating-point number.
#include <stdint.h>
static float mulf( const float x, const int32_t y ) {
return x * y;
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_FI_F( mulf );
The macro expects the following arguments:
float (*fcn)( float, int32_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface invoking a binary function accepting a double-precision complex floating-point number and a signed 32-bit and returning a double-precision complex floating-point number.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdint.h>
static stdlib_complex128_t mul( const stdlib_complex128_t x, const int32_t y ) {
double xre;
double xim;
double re;
double im;
stdlib_complex128_reim( x, &xre, &xim );
re = xre * y;
im = xim * y;
return stdlib_complex128( re, im );
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_ZI_Z( mul );
The macro expects the following arguments:
stdlib_complex128_t (*fcn)( stdlib_complex128_t, int32_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface invoking a binary function accepting a single-precision complex floating-point number and a signed 32-bit integer and returning a single-precision complex floating-point number.
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/reim.h"
#include <stdint.h>
static stdlib_complex64_t add( const stdlib_complex64_t x, const int32_t y ) {
float xre;
float xim;
float re;
float im;
stdlib_complex64_reim( x, &xre, &xim );
re = xre * y;
im = xim * y;
return stdlib_complex64( re, im );
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_CI_C( add );
The macro expects the following arguments:
stdlib_complex64_t (*fcn)( stdlib_complex64_t, int32_t )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface invoking a binary function accepting a double-precision complex floating-point number and a double-precision floating-point number and returning a double-precision complex floating-point number.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
static stdlib_complex128_t mul( const stdlib_complex128_t x, const double y ) {
double xre;
double xim;
double re;
double im;
stdlib_complex128_reim( x, &xre, &xim );
re = xre * y;
im = xim * y;
return stdlib_complex128( re, im );
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_ZD_Z( mul );
The macro expects the following arguments:
stdlib_complex128_t (*fcn)( stdlib_complex128_t, double )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
Macro for registering a Node-API module exporting an interface invoking a binary function accepting a single-precision complex floating-point number and a single-precision floating-point number and returning a single-precision complex floating-point number.
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/reim.h"
static stdlib_complex64_t add( const stdlib_complex64_t x, const float y ) {
float xre;
float xim;
float re;
float im;
stdlib_complex64_reim( x, &xre, &xim );
re = xre * y;
im = xim * y;
return stdlib_complex64( re, im );
}
// ...
// Register a Node-API module:
STDLIB_MATH_BASE_NAPI_MODULE_CF_C( add );
The macro expects the following arguments:
stdlib_complex64_t (*fcn)( stdlib_complex64_t, float )
binary function.When used, this macro should be used instead of NAPI_MODULE
. The macro includes NAPI_MODULE
, thus ensuring Node-API module registration.
The C-API functions expect that the callback info
argument provides access to the following JavaScript arguments:
x
: input value.y
: input value.This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.
0.3.0 (2024-07-28)
<section class="features">c5b26dc
- add Node-API macros for binary functionscf3f92e
- update include paths8908bda
- refactor: update paths (by Athan Reines)ad760a9
- refactor: update paths (by Athan Reines)cf3f92e
- fix: update include paths (by Athan Reines)75d4f83
- refactor: update require and include paths (by Athan Reines)c5b26dc
- feat: add Node-API macros for binary functions (by Aman Bhansali, Pranav, Athan Reines)A total of 3 people contributed to this release. Thank you to the following contributors:
FAQs
C APIs for registering a Node-API module exporting an interface for invoking a binary numerical function.
The npm package @stdlib/math-base-napi-binary receives a total of 322,593 weekly downloads. As such, @stdlib/math-base-napi-binary popularity was classified as popular.
We found that @stdlib/math-base-napi-binary demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.